Selasa, 18 Desember 2012

Gaya Gerak Listrik (GGL)

Definisi gaya gerak listrik adalah beda potensial antara ujung-ujung penghantar sebelum dialiri arus listrik. Gaya gerak listrik disingkat dengan GGL, dengan satuan volt.
Gaya gerak listrik merupakan energy yang diberikan pada setiap muatan listrik untuk bergerak antara dua kutub baterai atau generator. Sebuah electron-elektron bermuatan e yang bergerak dari kutub negative ke kutub positif melalui konduktor di luar baterai dengan gaya gerak listrik sebesar V, akan mendapat energy sebesar e x V joule.

Pada dasarnya sumber GGL itu segala jenis alat yang muatan positif ama negatifnya terpisah. Kedua ujung dari alat tersebut di sebut terminal. Muatan positif ya numpuknya di terminal positif, sementara muatan negatif, tentunya di terminal negatif.

Terminal positif namanya anoda. Terminal negatif namanya katoda. Ingetnya gini aja. Kalau positif itu ga ada noda. (Ga ada noda ya gak belajar.. hehe). Ga ada noda kan anoda, seperti gak ada tuhan, kan disebut ateis. Huruf a didepannya itu loh. Positif gak ada noda, negatif katoda. Mudah kan menghapalnya.

Oke, kembali ke anoda ama katoda tadi. Karena kedua jenis muatan ini misah, akibatnya ada medan listrik. Medannya nunjuk dari anoda ke katoda. Inget tuh arahnya. Dari anoda ke katoda.

Medan ini, kemudian, memaksakan sebuah gaya pada muatan positif. Medan ini memaksa, mendorong muatan positif dalam alat ini menuju katoda. Sementara itu, gaya ini juga memaksa muatan negatif ke anoda. Supaya muatan positif tetap di terminal positif dan muatan negatif tetep di terminal negatif, alat ini menghasilkan gaya non listrik yang melawan gaya listrik dan terus mendorong muatan positif ke anoda dan muatan negatif ke katoda. Jadi seperti gulat gitu. Sumo bisa juga. Medan listrik vs medan non listrik. Saling dorong mendorong.

Mungkin bisa dibayangkan GGL itu seperti air dalam pipa tegak yang dipaksa naik. Waktu airnya naik ke puncak (anoda) gravitasi maksain supaya tuh air turun (katoda). Jadi supaya air tetap bisa naik, harus ada gaya non gravitasi, seperti pompa misalnya, yang mendorong air melawan gravitasi.

Nah, dalam kasus GGL, gaya dari mesin pompa ini bisa berasal dari reaksi kimia, seperti baterai. Bisa juga dari gaya magnet, seperti dari generator listrik. Atau dari sumber mekanik lainnya lah.

Seperti dalam kasus air tadi, dimana energi potensial gravitasi air bertambah saat air di dorong semakin tinggi, gaya lain ini menyebabkan muatan mengalir ke anoda, meningkatkan energi potensial listrik. Akibatnya terjadi beda potensial antara anoda dan katoda.

Kalau ga ada rugi gara-gara panas waktu muatan mengalir ke anoda di dalam alat ini, beda potensialnya pastilah sama dengan GGL sumber. Ituloh, kan ada hukum kekekalan energi.

Kalau, di luar alat ini, kita pasang apakeq yang membuat anoda terhubung balik ke katoda, maka arus akan mengalir lewat penghubung ini dari anoda ke katoda. Ya penghubungnya bisa kabel atau kawat telanjang (kesetrum tanggung sendiri).

Muatan kehilangan energi listrik yang bergerak dari terminal tinggi ke terminal rendah lewat rangkaian luar, lalu dipaksa oleh gaya non listrik kembali ke anoda lewat alat GGL dan karenanya memperbaiki energi listriknya. Seperti sistem air kita lo. Airnya mengalir kembali lewat beberapa pipa lain lalu kembali lagi ke pipa tegak dengan dorongan pompa. Perbedaan potensial tetap terjaga antara terminal saat tidak ada arus. Kan gak ada kawat yang menghubungkan terminal. Nah, beda potensial kalau ga ada arus ini namanya GGL Rangkaian Terbuka.

Kalo kita menghubungkan satu kawat dengan hambatan R pada kedua terminal itu, berarti arus akan mengalir lewat hambatan itu dengan tegangan V yang bekerja di sepanjang terminal. Kalau kabel ini cuma satu-satunya hambatan yang ada di rangkaiannya, arusnya pasti mengikuti hukum Ohm, yaitu I = V/R = GGL/R.

Tapi kenyataannya, selalu ada rugi panas dalam sumber GGL. Panas ini muncul karena agitasi molekul saat muatan mengalir dalam sumber. Molekulnya merinding. Kan semakin kuat merindingnya molekul, semakin panas suhunya. Oke deh, kalau dalam kasus ini ya berarti GGL ga lagi sama dengan V. Ada energi non listrik yang hilang menjadi panas. Besarnya rugi panas ini sebanding dengan arus, jadinya GGL = V – I.r. Nah, r disini adalah tetapan proporsionalitas. Karena dimensinya sama dengan hambatan, jadi dia lebih sering disebut “hambatan dalam” atau Rint. Hambatan dalam apa? Ya hambatan dalam sumber.

Kalau gak ada arus mengalir melewati sumber, maka beda potensial sepanjang sumber itu sama aja dengan GGL rangkaian terbuka sumber, karena kan gak ada tegangan jatuh gara-gara arus lewat ke hambatan dalam. Tapi, kalau arusnya ngalir di rangkaian luar, arus yang sama juga bakalan mengalir di dalam sumber dan tegangan bakalan jatuh sebesar Vin = I. Rint. Jatuh tegangan ini terjadi di sepanjang hambatan dalam Rint. Akibatnya, tegangan yang ada pada rangkaian adalah E – I.Biasanya sumber GGL itu ya baterai. Baterai memakai gaya kimia dan karenanya energi kimia inilah yang dipakai untuk memaksa arus melewati baterai dari katoda ke anoda.

Sumber : http://edisutoto.wordpress.com/           

 

Gaya Gerak Listrik Induksi GGL, Medan Magnet menimbulkan Arus Listrik

image

Michael Faraday (1791-1867), seorang ilmuwan berkebangsaan Inggris, membuat hipotesis (dugaan) bahwa medan magnet seharusnya dapat menimbulkan arus listrik. Untuk membuktikan kebenaran hipotesis Faraday.

Berdasarkan percobaan, ditunjukkan bahwa gerakan magnet di dalam kumparan menyebabkan jarum galvanometer menyimpang. Jika kutub utara magnet digerakkan mendekati kumparan, jarum galvanometer menyimpang ke kanan. Jika magnet diam dalam kumparan, jarum galvanometer tidak menyimpang. Jika kutub utara magnet digerakkan menjauhi kumparan, jarum galvanometer menyimpang ke kiri. Penyimpangan jarum galvanometer tersebut menunjukkan bahwa pada kedua ujung kumparan terdapat arus listrik. Peristiwa timbulnya arus listrik seperti itulah yang disebut induksi elektromagnetik. Adapun beda potensial yang timbul pada ujung kumparan disebut gaya gerak listrik (GGL) induksi.

Terjadinya GGL induksi dapat dijelaskan seperti berikut. Jika kutub utara magnet didekatkan ke kumparan. Jumlah garis gaya yang masuk kumparan makin banyak. Perubahan jumlah garis gaya itulah yang menyebabkan terjadinya penyimpangan jarum galvanometer. Hal yang sama juga akan terjadi jika magnet digerakkan keluar dari kumparan. Akan tetapi, arah simpangan jarum galvanometer berlawanan dengan penyimpangan semula. Dengan demikian, dapat disimpulkan bahwa penyebab timbulnya GGL induksi adalah perubahan garis gaya magnet yang dilingkupi oleh kumparan.

Menurut Faraday, besar GGL induksi pada kedua ujung kumparan sebanding dengan laju perubahan fluks magnetik yang dilingkupi kumparan. Artinya, makin cepat terjadinya perubahan fluks magnetik, makin besar GGL induksi yang timbul. Adapun yang dimaksud fluks nmgnetik adalah banyaknya garis gaya magnet yang menembus suatu bidang.

Generator

Generator atau pembangkit listrik yang sederhana dapat ditemukan pada sepeda. Pada sepeda, biasanya dinamo digunakan untuk menyalakan lampu. Caranya ialah bagian atas dinamo (bagian yang dapat berputar) dihubungkan ke roda sepeda. Pada proses itulah terjadi perubalian energi gerak menjadi energi listrik. Generator (dinamo) merupakan alat yang prinsip kerjanya berdasarkan induksi elektromagnetik. Alat ini pertama kali ditemukan oleh Michael Faraday.
Berkebalikan dengan motor listrik, generator adalah mesin yang mengubah energi kinetik menjadi energi listrik. Energi kinetik pada generator dapat juga diperoleh dari angin atau air terjun. Berdasarkan arus yang dihasilkan. Generator dapat dibedakan menjadi dua rnacam, yaitu generator AC dan generator DC. Generator AC menghasilkan arus bolak-balik (AC) dan generator DC menghasilkan arus searah (DC). Baik arus bolak-balik maupun searah dapat digunakan untuk penerangan dan alat-alat pemanas.

image

Bagian utama generator AC terdiri atas magnet permanen (tetap), kumparan (solenoida). cincin geser, dan sikat. Pada generator. perubahan garis gaya magnet diperoleh dengan cara memutar kumparan di dalam medan magnet permanen. Karena dihubungkan dengan cincin geser, perputaran kumparan menimbulkan GGL induksi AC. OIeh karena itu, arus induksi yang ditimbulkan berupa arus AC. Adanya arus AC ini ditunjukkan oleh menyalanya lampu pijar yang disusun seri dengan kedua sikat. Sebagaimana percobaan Faraday

GGL induksi yang ditimbulkan oleh generator AC dapat diperbesar dengan cara:

memperbanyak lilitan kumparan,

menggunakan magnet permanen yang lebih kuat.

mempercepat perputaran kumparan, dan menyisipkan inti besi lunak ke dalam kumparan.

Contoh generator AC yang akan sering kita jumpai dalam kehidupan sehari-hari adalah dinamo sepeda. Bagian utama dinamo sepeda adalah sebuah magnet tetap dan kumparan yang disisipi besi lunak. Jika magnet tetap diputar, perputaran tersebut menimbulkan GGL induksi pada kumparan. Jika sebuah lampu pijar (lampu sepeda) dipasang pada kabel yang menghubungkan kedua ujung kumparan. lampu tersebut akan dilalui arus induksi AC. Akibatnya, lampu tersebut menyala. Nyala lampu akan makin terang jika perputaran magnet tetap makin cepat (laju sepeda makin kencang).

Generator DC
Prinsip kerja generator (dinamo) DC sama dengan generator AC. Namun, pada generator DC arah arus induksinya tidak berubah. Hal ini disebabkan cincin yang digunakan pada generator DC berupa cincin belah (komutator)

image

Agar tidak berbahaya tegangan yang tinggi itu harus diturunkan terlebih dahulu sebelum arus listrik disalurkan ke rumah-rumah penduduk. Pada umumnya tegangan listrik yang disalurkan ke rumah-rumah penduduk ada dua macam, yaitu 220 volt dan 1l0 volt. Alat yang digunakan untuk menurunkan tegangan disebut transformator.
Bagian utama transformator adalah dua buah kumparan yang keduanya dililitkan pada sebuah inti besi lunak. Kedua kumparan tersebut memiliki jumlah lilitan yang berbeda. Kumparan yang dihubungkan dengan sumber tegangan AC disebut kumparan primer, sedangkan kumparan yang lain disebut kumparan sekunder.

image

Jika kumparan primer dihubungkan dengan sumber tegangan AC (dialiri arus listrik AC), besi lunak akan menjadi elektromagnet. Karena arus yang mengalir tersebut adalah arus AC, garis-garis gaya elektromagnet selalu berubah-ubah. Oleh karena itu, garis-garis gaya yang dilingkupi oleh kumparan sekunder juga berubah-ubah. Perubahan garis gaya itu menimbulkan GGL induksi pada kumparan sekunder. Hal itu menyebabkan pada kumparan sekunder mengalir arus AC (arus induksi).

Kita dapat rnembedakan transformator menjadi dua macam. yaitu transformator step up dan transformator step down. Transformator .step up adalah transformator yang jumlah lilitan primernya lebih kecil dari pada lilitan sekunder. Oleh karena itu, transformator step up dapat digunakun untuk menaikkan tegangan AC.

 

 

Sumber : http://bosgentongs.com/

0 komentar:

Posting Komentar

Enter your email address:

Delivered by FeedBurner